In Exercises 5-10, find the slope of the tangent line to the graph of the function at the specified point.

5.
$$f(x) = 3 - 2x$$
, $(-1, 5)$

6.
$$g(x) = \frac{3}{2}x + 1$$
, $(-2, -2)$

7.
$$g(x) = x^2 - 4$$
, $(1, -3)$ 8. $g(x) = 5 - x^2$, $(2, 1)$

8.
$$g(x) = 5 - x^2$$
, (2, 1)

9.
$$f(t) = 3t - t^2$$
, (0,0)

10.
$$h(t) = t^2 + 3$$
, $(-2, 7)$

In Exercises 11–24, find the derivative by the limit process.

11.
$$f(x) = 3$$

12.
$$g(x) = -5$$

13.
$$f(x) = -5x$$

14.
$$f(x) = 3x + 2$$

15.
$$h(s) = 3 + \frac{2}{3}s$$

16.
$$f(x) = 9 - \frac{1}{2}x$$

17.
$$f(x) = 2x^2 + x - 1$$

18.
$$f(x) = 1 - x^2$$

19.
$$f(x) = x^3 - 12x$$

20.
$$f(x) = x^3 + x^2$$

21.
$$f(x) = \frac{1}{x-1}$$

22.
$$f(x) = \frac{1}{x^2}$$

23.
$$f(x) = \sqrt{x+1}$$

24.
$$f(x) = \frac{4}{\sqrt{x}}$$

In Exercises 25–32, (a) find an equation of the tangent line to the graph of f at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results.

25.
$$f(x) = x^2 + 1$$
, (2.5)

25.
$$f(x) = x^2 + 1$$
, (2,5) **26.** $f(x) = x^2 + 2x + 1$, (-3,4)

27.
$$f(x) = x^3$$
. (2. 8)

27.
$$f(x) = x^3$$
, (2, 8) **28.** $f(x) = x^3 + 1$, (1, 2)

29.
$$f(x) = \sqrt{x}$$
, (1, 1)

30.
$$f(x) = \sqrt{x-1}$$
, (5, 2)

31.
$$f(x) = x + \frac{4}{x}$$
, (4, 5)

31.
$$f(x) = x + \frac{4}{x}$$
, (4, 5)
32. $f(x) = \frac{1}{x+1}$, (0, 1)

In Exercises 33–36, find an equation of the line that is tangent to the graph of fand parallel to the given line.

Function Line

33.
$$f(x) = x^3$$
 $3x - y + 1 = 0$

34.
$$f(x) = x^3 + 2$$
 $3x - y - 4 = 0$

35.
$$f(x) = \frac{1}{\sqrt{x}}$$
 $x + 2y - 6 = 0$

36.
$$f(x) = \frac{1}{\sqrt{x-1}}$$
 $x + 2y + 7 = 0$

In Exercises 61-70, use the alternative form of the derivative to find the derivative at x = c (if it exists).

61.
$$f(x) = x^2 - 1$$
, $c = 2$

62.
$$g(x) = x(x-1)$$
, $c = 1$

63.
$$f(x) = x^3 + 2x^2 + 1$$
, $c = -2$

64.
$$f(x) = x^3 + 2x$$
, $c = 1$

65.
$$g(x) = \sqrt{|x|}, c = 0$$

66.
$$f(x) = 1/x$$
, $c = 3$

67.
$$f(x) = (x - 6)^{2/3}$$
, $c = 6$

68.
$$g(x) = (x + 3)^{1/3}, c = -3$$

69.
$$h(x) = |x + 5|, c = -5$$

70.
$$f(x) = |x - 4|, c = 4$$

In Exercises 81–84, find the derivatives from the left and from the right at x = 1(if they exist). Is the function differentiable at x = 1?

81.
$$f(x) = |x - 1|$$

82.
$$f(x) = \sqrt{1-x^2}$$

83.
$$f(x) = \begin{cases} (x-1)^3, & x \le 1 \\ (x-1)^2, & x > 1 \end{cases}$$
 84. $f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}$

84.
$$f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}$$

In Exercises 85 and 86, determine whether the function is differentiable at x = 2.

85.
$$f(x) = \begin{cases} x^2 + 1, & x \le 2\\ 4x - 3, & x > 2 \end{cases}$$

85.
$$f(x) = \begin{cases} x^2 + 1, & x \le 2 \\ 4x - 3, & x > 2 \end{cases}$$
 86. $f(x) = \begin{cases} \frac{1}{2}x + 1, & x < 2 \\ \sqrt{2x}, & x \ge 2 \end{cases}$